Research output: Contribution to journal › Article

784 KB, PDF document

Journal | Journal of Mathematical Physics |
---|---|

Date | Submitted - Jan 2018 |

Date | Accepted/In press - 18 Mar 2018 |

Date | E-pub ahead of print - 5 Apr 2018 |

Date | Published (current) - Apr 2018 |

Issue number | 4 |

Volume | 59 |

Number of pages | 16 |

Early online date | 5/04/18 |

Original language | English |

We study uncertainty relations for pairs of conjugate variables like number and angle, of which one takes integer values and the other takes values on the unit circle. The translation symmetry of the problem in either variable implies that measurement uncertainty and preparation uncertainty coincide quantitatively, and the bounds depend only on the choice of two metrics used to quantify the difference of number and angle outputs, respectively. For each type of observable, we discuss two natural choices of metric and discuss the resulting optimal bounds with both numerical and analytical methods. We also develop some simple and explicit (albeit not sharp) lower bounds, using an apparently new method for obtaining certified lower bounds to ground state problems.

Published by AIP Publishing. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details

- quantum mechanics, uncertainty relations

Find related publications, people, projects, datasets and more using interactive charts.