Research output: Contribution to journal › Article › peer-review
Sodium accumulation in breast cancer predicts malignancy and treatment response
3.54 MB, PDF document
Journal | British journal of cancer |
---|---|
Date | Accepted/In press - 9 Mar 2022 |
Date | E-pub ahead of print (current) - 25 Apr 2022 |
Number of pages | 13 |
Early online date | 25/04/22 |
Original language | English |
BACKGROUND: Breast cancer remains a leading cause of death in women and novel imaging biomarkers are urgently required. Here, we demonstrate the diagnostic and treatment-monitoring potential of non-invasive sodium ( 23Na) MRI in preclinical models of breast cancer.
METHODS: Female Rag2 -/- Il2rg -/- and Balb/c mice bearing orthotopic breast tumours (MDA-MB-231, EMT6 and 4T1) underwent MRI as part of a randomised, controlled, interventional study. Tumour biology was probed using ex vivo fluorescence microscopy and electrophysiology.
RESULTS: 23Na MRI revealed elevated sodium concentration ([Na +]) in tumours vs non-tumour regions. Complementary proton-based diffusion-weighted imaging (DWI) linked elevated tumour [Na +] to increased cellularity. Combining 23Na MRI and DWI measurements enabled superior classification accuracy of tumour vs non-tumour regions compared with either parameter alone. Ex vivo assessment of isolated tumour slices confirmed elevated intracellular [Na +] ([Na +] i); extracellular [Na +] ([Na +] e) remained unchanged. Treatment with specific inward Na + conductance inhibitors (cariporide, eslicarbazepine acetate) did not affect tumour [Na +]. Nonetheless, effective treatment with docetaxel reduced tumour [Na +], whereas DWI measures were unchanged.
CONCLUSIONS: Orthotopic breast cancer models exhibit elevated tumour [Na +] that is driven by aberrantly elevated [Na +] i. Moreover, 23Na MRI enhances the diagnostic capability of DWI and represents a novel, non-invasive biomarker of treatment response with superior sensitivity compared to DWI alone.
Funding Information:
This work was supported by Cancer Research UK (A25922), Breast Cancer Now (2015NovPhD572), BBSRC (BB/S507416/1) and an EPSRC Impact Accelerator Award. FJG, JK, GB, MAM are supported by the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014). The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care.
Publisher Copyright:
© 2022, The Author(s).
Find related publications, people, projects, datasets and more using interactive charts.