TY - JOUR
T1 - Spatial organisation of expanding bacterial colonies is affected by contact-dependent growth inhibition
AU - Bottery, Michael John
AU - Passaris, Ioannis
AU - Dytham, Calvin
AU - Wood, Andrew James
AU - Van Der Woude, Marjan
N1 - © Bottery et al., 2019.
PY - 2019/11/4
Y1 - 2019/11/4
N2 - Identifying how microbes are able to manipulate, survive and thrive in complex multispecies communities has expanded our understanding of how microbial ecosystems impact human health and the environment. The ability of bacteria to negatively affect neighbours, through explicit toxin delivery systems, provides them with an opportunity to manipulate the composition of growing microbial communities. Contact-dependent inhibition (CDI) systems (a Type Vb secretion system) are a distinct subset of competition systems whose contribution to shaping the development of spatially-structured bacterial communities are yet to be fully understood. Here we compare the impact of different CDI systems, at both the single cell and population level, to determine the key drivers of CDI-mediated competition within spatially-structured bacterial populations. Through an iterative approach using both an Escherichia coli experimental system and computational modelling, we show that CDI systems have subtle and system-specific effects at the single cell level, generating single cell wide boundaries between CDI-expressing inhibitor cells and their neighbouring targets. Despite the subtle effects of CDI at a single cell level, CDI systems greatly diminished the ability of susceptible targets to expand their range during colony growth. The inoculum density of the population, together with the CDI system-specific variables of the speed of inhibition after contact and biological cost of CDI, strongly affects CDI-mediated competition. In contrast, the magnitude of the toxin-induced growth retardation of target cells only weakly impacts the composition of the population. Our work reveals how distinct CDI systems can differentially affect the composition and spatial arrangement of bacterial populations.
AB - Identifying how microbes are able to manipulate, survive and thrive in complex multispecies communities has expanded our understanding of how microbial ecosystems impact human health and the environment. The ability of bacteria to negatively affect neighbours, through explicit toxin delivery systems, provides them with an opportunity to manipulate the composition of growing microbial communities. Contact-dependent inhibition (CDI) systems (a Type Vb secretion system) are a distinct subset of competition systems whose contribution to shaping the development of spatially-structured bacterial communities are yet to be fully understood. Here we compare the impact of different CDI systems, at both the single cell and population level, to determine the key drivers of CDI-mediated competition within spatially-structured bacterial populations. Through an iterative approach using both an Escherichia coli experimental system and computational modelling, we show that CDI systems have subtle and system-specific effects at the single cell level, generating single cell wide boundaries between CDI-expressing inhibitor cells and their neighbouring targets. Despite the subtle effects of CDI at a single cell level, CDI systems greatly diminished the ability of susceptible targets to expand their range during colony growth. The inoculum density of the population, together with the CDI system-specific variables of the speed of inhibition after contact and biological cost of CDI, strongly affects CDI-mediated competition. In contrast, the magnitude of the toxin-induced growth retardation of target cells only weakly impacts the composition of the population. Our work reveals how distinct CDI systems can differentially affect the composition and spatial arrangement of bacterial populations.
U2 - 10.1016/j.cub.2019.08.074
DO - 10.1016/j.cub.2019.08.074
M3 - Article
VL - 29
SP - 3622
EP - 3634
JO - Current Biology
JF - Current Biology
SN - 0960-9822
IS - e1-e5
ER -