By the same authors

From the same journal

From the same journal

Spatial organisation of expanding bacterial colonies is affected by contact-dependent growth inhibition

Research output: Contribution to journalArticle

Full text download(s)

Published copy (DOI)

Author(s)

Department/unit(s)

Publication details

JournalCurrent Biology
DateAccepted/In press - 29 Aug 2019
DateE-pub ahead of print (current) - 17 Oct 2019
Issue numbere1-e5
Volume29
Number of pages19
Pages (from-to)1-19
Early online date17/10/19
Original languageEnglish

Abstract

Identifying how microbes are able to manipulate, survive and thrive in complex multispecies communities has expanded our understanding of how microbial ecosystems impact human health and the environment. The ability of bacteria to negatively affect neighbours, through explicit toxin delivery systems, provides them with an opportunity to manipulate the composition of growing microbial communities. Contact-dependent inhibition (CDI) systems (a Type Vb secretion system) are a distinct subset of competition systems whose contribution to shaping the development of spatially-structured bacterial communities are yet to be fully understood. Here we compare the impact of different CDI systems, at both the single cell and population level, to determine the key drivers of CDI-mediated competition within spatially-structured bacterial populations. Through an iterative approach using both an Escherichia coli experimental system and computational modelling, we show that CDI systems have subtle and system-specific effects at the single cell level, generating single cell wide boundaries between CDI-expressing inhibitor cells and their neighbouring targets. Despite the subtle effects of CDI at a single cell level, CDI systems greatly diminished the ability of susceptible targets to expand their range during colony growth. The inoculum density of the population, together with the CDI system-specific variables of the speed of inhibition after contact and biological cost of CDI, strongly affects CDI-mediated competition. In contrast, the magnitude of the toxin-induced growth retardation of target cells only weakly impacts the composition of the population. Our work reveals how distinct CDI systems can differentially affect the composition and spatial arrangement of bacterial populations.

Bibliographical note

© Bottery et al., 2019.

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations