TY - JOUR
T1 - Splay nematic phase
AU - Mertelj, Alenka
AU - Cmok, Luka
AU - Sebastián, Nerea
AU - Mandle, Richard
AU - Parker, Rachel Roberta
AU - Whitwood, Adrian C.
AU - Goodby, John William
AU - Čopič, Martin
N1 - © 2018, The Author(s).
PY - 2018/11/12
Y1 - 2018/11/12
N2 - Different liquid crystalline phases with long-range orientational but not positional order, so-called nematic phases, are scarce. It rarely occurs that a new nematic phase is discovered and such event is inevitably accompanied by a great interest. Here, we describe a transition from uniaxial to novel nematic phase characterized by a periodic splay modulation of the director. In this new nematic phase, defect structures not present in the uniaxial nematic are observed, which indicates that the new phase has lower symmetry than the ordinary nematic phase. The phase transition is weakly first order with a significant pretransitional behavior, which manifests as strong splay fluctuations. When approaching the phase transition, the splay nematic constant is unusually low and goes towards zero. Analogously to the transition from the uniaxial nematic to the twist-bend nematic phase, this transition is driven by instability towards splay orientational deformation, resulting in a periodically splayed structure. And, similarly, a Landau-de Gennes type of phenomenological theory can be used to describe the phase transition. The modulated splay phase is biaxial and antiferroelectric.
AB - Different liquid crystalline phases with long-range orientational but not positional order, so-called nematic phases, are scarce. It rarely occurs that a new nematic phase is discovered and such event is inevitably accompanied by a great interest. Here, we describe a transition from uniaxial to novel nematic phase characterized by a periodic splay modulation of the director. In this new nematic phase, defect structures not present in the uniaxial nematic are observed, which indicates that the new phase has lower symmetry than the ordinary nematic phase. The phase transition is weakly first order with a significant pretransitional behavior, which manifests as strong splay fluctuations. When approaching the phase transition, the splay nematic constant is unusually low and goes towards zero. Analogously to the transition from the uniaxial nematic to the twist-bend nematic phase, this transition is driven by instability towards splay orientational deformation, resulting in a periodically splayed structure. And, similarly, a Landau-de Gennes type of phenomenological theory can be used to describe the phase transition. The modulated splay phase is biaxial and antiferroelectric.
U2 - 10.1103/PhysRevX.8.041025
DO - 10.1103/PhysRevX.8.041025
M3 - Article
SN - 2160-3308
SP - 1
EP - 12
JO - Physical Review X
JF - Physical Review X
ER -