By the same authors

From the same journal

From the same journal

Spontaneous exchange bias formation driven by a structural phase transition in the antiferromagnetic material

Research output: Contribution to journalArticle

Full text download(s)

Published copy (DOI)

Author(s)

Department/unit(s)

Publication details

JournalNature Materials
DateSubmitted - 2017
DateAccepted/In press - 13 Oct 2017
DateE-pub ahead of print (current) - 20 Nov 2017
Number of pages8
Pages (from-to)1-8
Early online date20/11/17
Original languageEnglish

Abstract

Most of the magnetic devices in advanced electronics rely on the exchange bias effect, a magnetic interaction that couples a ferromagnetic and an antiferromagnetic material, resulting in a unidirectional displacement of the ferromagnetic hysteresis loop by an amount called the 'exchange bias field'. Setting and optimizing exchange bias involves cooling through the Néel temperature of the antiferromagnetic material in the presence of a magnetic field. Here we demonstrate an alternative process for the generation of exchange bias. In IrMn/FeCo bilayers, a structural phase transition in the IrMn layer develops at room temperature, exchange biasing the FeCo layer as it propagates. Once the process is completed, the IrMn layer contains very large single-crystal grains, with a large density of structural defects within each grain, which are promoted by the FeCo layer. The magnetic characterization indicates that these structural defects in the antiferromagnetic layer are behind the resulting large value of the exchange bias field and its good thermal stability. This mechanism for establishing the exchange bias in such a system can contribute towards the clarification of fundamental aspects of this exchange interaction.

Bibliographical note

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details.

    Research areas

  • Journal Article

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations