TY - UNPB
T1 - State of the Art Report
T2 - Verified Computation
AU - Woodcock, Jim
AU - Aranha, Diego F.
AU - Hallerstede, Stefan
AU - Hansen, Simon Thrane
AU - Jakobsen, Nikolaj Kuhne
AU - Kulik, Tomas
AU - Larsen, Peter Gorm
AU - Macedo, Hugo Daniel
AU - Martin, Carlos Ignacio Isasa
AU - Norrild, Victor Alexander Mtsimbe
N1 - 54 pages
PY - 2023/8/29
Y1 - 2023/8/29
N2 - This report describes the state of the art in verifiable computation. The problem being solved is the following: The Verifiable Computation Problem (Verifiable Computing Problem) Suppose we have two computing agents. The first agent is the verifier, and the second agent is the prover. The verifier wants the prover to perform a computation. The verifier sends a description of the computation to the prover. Once the prover has completed the task, the prover returns the output to the verifier. The output will contain proof. The verifier can use this proof to check if the prover computed the output correctly. The check is not required to verify the algorithm used in the computation. Instead, it is a check that the prover computed the output using the computation specified by the verifier. The effort required for the check should be much less than that required to perform the computation. This state-of-the-art report surveys 128 papers from the literature comprising more than 4,000 pages. Other papers and books were surveyed but were omitted. The papers surveyed were overwhelmingly mathematical. We have summarised the major concepts that form the foundations for verifiable computation. The report contains two main sections. The first, larger section covers the theoretical foundations for probabilistically checkable and zero-knowledge proofs. The second section contains a description of the current practice in verifiable computation. Two further reports will cover (i) military applications of verifiable computation and (ii) a collection of technical demonstrators. The first of these is intended to be read by those who want to know what applications are enabled by the current state of the art in verifiable computation. The second is for those who want to see practical tools and conduct experiments themselves.
AB - This report describes the state of the art in verifiable computation. The problem being solved is the following: The Verifiable Computation Problem (Verifiable Computing Problem) Suppose we have two computing agents. The first agent is the verifier, and the second agent is the prover. The verifier wants the prover to perform a computation. The verifier sends a description of the computation to the prover. Once the prover has completed the task, the prover returns the output to the verifier. The output will contain proof. The verifier can use this proof to check if the prover computed the output correctly. The check is not required to verify the algorithm used in the computation. Instead, it is a check that the prover computed the output using the computation specified by the verifier. The effort required for the check should be much less than that required to perform the computation. This state-of-the-art report surveys 128 papers from the literature comprising more than 4,000 pages. Other papers and books were surveyed but were omitted. The papers surveyed were overwhelmingly mathematical. We have summarised the major concepts that form the foundations for verifiable computation. The report contains two main sections. The first, larger section covers the theoretical foundations for probabilistically checkable and zero-knowledge proofs. The second section contains a description of the current practice in verifiable computation. Two further reports will cover (i) military applications of verifiable computation and (ii) a collection of technical demonstrators. The first of these is intended to be read by those who want to know what applications are enabled by the current state of the art in verifiable computation. The second is for those who want to see practical tools and conduct experiments themselves.
KW - cs.CR
M3 - Preprint
BT - State of the Art Report
PB - Arxiv (Cornell University)
ER -