Abstract
Stochastic logic programs (SLPs) and the various distributions they define are presented with a stress on their characterisation in terms of Markov chains. Sampling, parameter estimation and structure learning for SLPs are discussed. The application of SLPs to Bayesian learning, computational linguistics and computational biology are considered. Lafferty's Gibbs-Markov models are compared and contrasted with SLPs.
Original language | English |
---|---|
Title of host publication | Artificial Intelligence and Statistics 2001: Proceedings of the Eighth International Workshop |
Editors | Tommi Jaakkola, Thomas Richardson |
Place of Publication | Key West, Florida |
Publisher | MORGAN KAUFMANN PUB INC |
Pages | 181-186 |
Number of pages | 6 |
Publication status | Published - 1 Jan 2001 |