Structural and kinetic dissection of the endo-α-1,2-mannanase activity of bacterial GH99 glycoside hydrolases from Bacteroides spp

Zalihe Hakki, Andrew J. Thompson, Stephanie Bellmaine, Gaetano Speciale, Gideon J. Davies*, Spencer J. Williams

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Glycoside hydrolase family 99 (GH99) was created to categorize sequence-related glycosidases possessing endo -a-mannosidase activity: the cleavage of mannosidic linkages within eukaryotic N-glycan precursors (Glc1-3Man9GlcNAc2), releasing mono-, di- and triglucosylated-mannose (Glc1-3-1,3-Man). GH99 family members have recently been implicated in the ability of Bacteroides spp., present within the gut microbiota, to metabolize fungal cell wall α-mannans, releasing α-1,3-mannobiose by hydrolysing αMan-1,3-αMan→1,2-αMan-1,2-αMan sequences within branches off the main α-1,6-mannan backbone. We report the development of a series of substrates and inhibitors, which we use to kinetically and structurally characterise this novel endo -α-1,2-mannanase activity of bacterial GH99 enzymes from Bacteroides thetaiotaomicron and xylanisolvens. These data reveal an approximate 5 kJ mol-1 preference for mannose-configured substrates in the -2 subsite (relative to glucose), which inspired the development of a new inhibitor, α-mannopyranosyl-1,3-isofagomine (ManIFG), the most potent (bacterial) GH99 inhibitor reported to date. X-ray structures of ManIFG or a substrate in complex with wildtype or inactive mutants, respectively, of B. xylanisolvens GH99 reveal the structural basis for binding to d-mannoserather than d-glucose-configured substrates.

Original languageEnglish
Pages (from-to)1966-1977
Number of pages12
JournalChemistry : A European Journal
Volume21
Issue number5
Early online date8 Dec 2014
DOIs
Publication statusPublished - 26 Jan 2015

Keywords

  • Carbohydrates
  • Endomannosidase
  • Enzymes
  • Mechanism
  • Structural biology

Cite this