By the same authors

Synthesis of Probabilistic Models for Quality-of-Service Software Engineering

Research output: Contribution to journalArticle

Author(s)

Department/unit(s)

Publication details

JournalAutomated Software Engineering
DateAccepted/In press - 30 Apr 2018
DateE-pub ahead of print (current) - 17 May 2018
Number of pages47
Early online date17/05/18
Original languageEnglish

Abstract

An increasingly used method for the engineering of software systems with strict quality-of-service (QoS) requirements involves the synthesis and verification of probabilistic models for many alternative architectures and instantiations of system parameters. Using manual trial-and-error or simple heuristics for this task often produces suboptimal models, while the exhaustive synthesis of all possible models is typically intractable. The EvoChecker search-based software engineering approach presented in our paper addresses these limitations by employing evolutionary algorithms to automate the model synthesis process and to significantly improve its outcome. EvoChecker can be used to synthesise the Pareto-optimal set of probabilistic models associated with the QoS requirements of a system under design, and to support the selection of a suitable system architecture and configuration. EvoChecker can also be used at runtime, to drive the efficient reconfiguration of a self-adaptive software system. We evaluate EvoChecker on several variants of three systems from different application domains, and show its effectiveness and applicability.

Bibliographical note

© The Author(s) 2018

    Research areas

  • search-based software engineering, QoS requirements, Probabilistic model checking, Evolutionary algorithms

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations