TY - JOUR
T1 - The Anterior Insula Tracks Behavioral Entropy during an Interpersonal Competitive Game
AU - Takahashi, Hideyuki
AU - Izuma, Keise
AU - Matsumoto, Madoka
AU - Matsumoto, Kenji
AU - Omori, Takashi
N1 - © 2015 Takahashi et al.
PY - 2015
Y1 - 2015
N2 - In competitive situations, individuals need to adjust their behavioral strategy dynamically in response to their opponent's behavior. In the present study, we investigated the neural basis of how individuals adjust their strategy during a simple, competitive game of matching pennies. We used entropy as a behavioral index of randomness in decision-making, because maximizing randomness is thought to be an optimal strategy in the game, according to game theory. While undergoing functional magnetic resonance imaging (fMRI), subjects played matching pennies with either a human or computer opponent in each block, although in reality they played the game with the same computer algorithm under both conditions. The winning rate of each block was also manipulated. Both the opponent (human or computer), and the winning rate, independently affected subjects' block-wise entropy during the game. The fMRI results revealed that activity in the bilateral anterior insula was positively correlated with subjects' (not opponent's) behavioral entropy during the game, which indicates that during an interpersonal competitive game, the anterior insula tracked how uncertain subjects' behavior was, rather than how uncertain subjects felt their opponent's behavior was. Our results suggest that intuitive or automatic processes based on somatic markers may be a key to optimally adjusting behavioral strategies in competitive situations.
AB - In competitive situations, individuals need to adjust their behavioral strategy dynamically in response to their opponent's behavior. In the present study, we investigated the neural basis of how individuals adjust their strategy during a simple, competitive game of matching pennies. We used entropy as a behavioral index of randomness in decision-making, because maximizing randomness is thought to be an optimal strategy in the game, according to game theory. While undergoing functional magnetic resonance imaging (fMRI), subjects played matching pennies with either a human or computer opponent in each block, although in reality they played the game with the same computer algorithm under both conditions. The winning rate of each block was also manipulated. Both the opponent (human or computer), and the winning rate, independently affected subjects' block-wise entropy during the game. The fMRI results revealed that activity in the bilateral anterior insula was positively correlated with subjects' (not opponent's) behavioral entropy during the game, which indicates that during an interpersonal competitive game, the anterior insula tracked how uncertain subjects' behavior was, rather than how uncertain subjects felt their opponent's behavior was. Our results suggest that intuitive or automatic processes based on somatic markers may be a key to optimally adjusting behavioral strategies in competitive situations.
U2 - 10.1371/journal.pone.0123329
DO - 10.1371/journal.pone.0123329
M3 - Article
C2 - 26039634
SN - 1932-6203
VL - 10
JO - PLoS ONE
JF - PLoS ONE
IS - 6
M1 - e0123329
ER -