The electrophotonic silicon biosensor

Research output: Contribution to journalArticlepeer-review


The emergence of personalized and stratified medicine requires label-free and low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high sensitivity analysis with scalable, low-cost manufacturing technology but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here, we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomolecules. Our electro-photonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical processes enables site selective immobilization of different biomolecules, here single stranded DNA, onto individual microrings within a sensor array. The combination of photonic and electrochemical characterization of molecules bound to the sensor surface also provides direct quantification of binding density and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the micro-scale.
Original languageEnglish
Article number12769 (2016)
Number of pages7
JournalNature Communications
Publication statusPublished - 14 Sept 2016

Bibliographical note

©The Author(s) 2016

Cite this