By the same authors

From the same journal

From the same journal

The emergence of sequence-dependent structural motifs in stretched, torsionally 2 constrained DNA

Research output: Contribution to journalArticlepeer-review

Full text download(s)

Published copy (DOI)



Publication details

JournalNucleic Acids Research
DateAccepted/In press - 20 Dec 2019
DatePublished (current) - 13 Jan 2020
Issue number4
Pages (from-to)1748–1763
Original languageEnglish


The double-helical structure of DNA results from canonical base pairing and stacking interactions. However, variations from steady-state conformations resulting from mechanical perturbations in cells have physiological relevance but their dependence on sequence remains unclear. Here, we use molecular dynamics simulations showing sequence differences result in markedly different structural motifs upon physiological twisting and stretching. We simulate overextension on different sequences of DNA ((AA)12, (AT)12, (CC)12 and (CG)12) with supercoiling densities at 200 and 50 mM salt concentrations. We find that DNA denatures in the majority of stretching simulations, surprisingly including those with over-twisted DNA. GC-rich sequences are observed to be more stable than AT-rich ones, with the specific response dependent on the base pair order. Furthermore, we find that (AT)12 forms stable periodic structures with non-canonical hydrogen bonds in some regions and non-canonical stacking in others, whereas (CG)12 forms a stacking motif of four base pairs independent of supercoiling density. Our results demonstrate that 20–30% DNA extension is sufficient for breaking B-DNA around and significantly above cellular supercoiling, and that the DNA sequence is crucial for understanding structural changes under mechanical stress. Our findings have important implications for the activities of protein machinery interacting with DNA in all cells.

Bibliographical note

© The Author(s) 2020.

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations