TY - JOUR

T1 - The entanglement of few-particle systems when using the local-density approximation

AU - Coe, J.P.

AU - D'Amico, I.

N1 - within the special issue: QUANTUM GROUPS, QUANTUM FOUNDATIONS, AND QUANTUM INFORMATION: A FESTSCHRIFT FOR TONY SUDBERY

PY - 2010/1/1

Y1 - 2010/1/1

N2 - In this chapter we discuss methods to calculate the entanglement of a system using density-functional theory. We firstly introduce density-functional theory and the local-density approximation (LDA). We then discuss the concept of the 'interacting LDA system'. This is characterised by an interacting many-body Hamiltonian which reproduces, uniquely and exactly, the ground state density obtained from the single-particle Kohn-Sham equations of density-functional theory when the local-density approximation is used. We motivate why this idea can be useful for appraising the local-density approximation in many-body physics particularly with regards to entanglement and related quantum information applications. Using an iterative scheme, we find the Hamiltonian characterising the interacting LDA system in relation to the test systems of Hooke's atom and helium-like atoms. The interacting LDA system ground state wavefunction is then used to calculate the spatial entanglement and the results are compared and contrasted with the exact entanglement for the two test systems. For Hooke's atom we also compare the entanglement to our previous estimates of an LDA entanglement. These were obtained using a combination of evolutionary algorithm and gradient descent, and using an LDA-based perturbative approach. We finally discuss if the position-space information entropy of the density - which can be obtained directly from the system density and hence easily from density-functional theory methods - can be considered as a proxy measure for the spatial entanglement for the test systems.

AB - In this chapter we discuss methods to calculate the entanglement of a system using density-functional theory. We firstly introduce density-functional theory and the local-density approximation (LDA). We then discuss the concept of the 'interacting LDA system'. This is characterised by an interacting many-body Hamiltonian which reproduces, uniquely and exactly, the ground state density obtained from the single-particle Kohn-Sham equations of density-functional theory when the local-density approximation is used. We motivate why this idea can be useful for appraising the local-density approximation in many-body physics particularly with regards to entanglement and related quantum information applications. Using an iterative scheme, we find the Hamiltonian characterising the interacting LDA system in relation to the test systems of Hooke's atom and helium-like atoms. The interacting LDA system ground state wavefunction is then used to calculate the spatial entanglement and the results are compared and contrasted with the exact entanglement for the two test systems. For Hooke's atom we also compare the entanglement to our previous estimates of an LDA entanglement. These were obtained using a combination of evolutionary algorithm and gradient descent, and using an LDA-based perturbative approach. We finally discuss if the position-space information entropy of the density - which can be obtained directly from the system density and hence easily from density-functional theory methods - can be considered as a proxy measure for the spatial entanglement for the test systems.

UR - http://www.scopus.com/inward/record.url?scp=79952394091&partnerID=8YFLogxK

U2 - 10.1088/1742-6596/254/1/012010

DO - 10.1088/1742-6596/254/1/012010

M3 - Special issue

AN - SCOPUS:79952394091

SN - 1742-6588

VL - 254

SP - 012010

JO - Journal of Physics: Conference Series

JF - Journal of Physics: Conference Series

IS - 1

ER -