The gas-phase equilibrium structures of Si 8O 12(OSiMe 3) 8 and Si 8O 12(CHCH 2) 8

D.A. Wann, C.N. Dickson, P.D. Lickiss, H.E. Robertson, D.W.H. Rankin

Research output: Contribution to journalArticlepeer-review


The equilibrium molecular structure of Si 8O 12(OSiMe 3) 8 has been determined in the gas phase by electron diffraction (GED). With OSi-containing substituents on the cage silicon atoms, this molecule contains a moiety, which would, if reproduced in a periodic manner, yield a zeolite-type structure. Extensive ab initio calculations were used to identify two conformers of this molecule, with D 4 and D 2 point-group symmetries; the D 4- symmetric conformer was approximately 1.2 kJ mol -1 lower in energy. With 132 atoms in each conformer, this is one of the largest studies to be undertaken using gas electron diffraction. Semiempirical molecular-dynamics (SE-MD) calculations were used to give amplitudes of vibration, vibrational distance corrections (differences between interatomic distances in the equilibrium structure and the vibrationally averaged distances that are given directly by the diffraction data), and anharmonic constants. The structure of Si 8O 12(CHCH 2) 8 has also been determined by GED. Calculations showed that the vinyl groups are fairly unhindered and rotate between three minimum-energy positions. Ultimately, all possible combinations of the vinyl groups in these low-energy positions were accounted for in the GED model. © 2011 American Chemical Society.
Original languageEnglish
Pages (from-to)2988-2994
JournalInorganic Chemistry
Issue number7
Publication statusPublished - 4 Apr 2011

Bibliographical note

Cited By (since 1996):6

Export Date: 1 October 2013

Source: Scopus


doi: 10.1021/ic102457w

PubMed ID: 21384904

Language of Original Document: English

Correspondence Address: Wann, D. A.; School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, United Kingdom; email:

Chemicals/CAS: Gases; Organosilicon Compounds

References: Lickiss, P.D., Rataboul, F., (2008) Adv. Organomet. Chem., 57, p. 1; Cordes, D.B., Lickiss, P.D., Rataboul, F., (2010) Chem. Rev., 110, p. 2081; Quadrelli, E.A., Basset, J.-M., (2010) Coord. Chem. Rev., 254, p. 707; Di Iulio, C., Jones, M.D., Mahon, M.F., Apperley, D.C., (2010) Inorg. Chem., 49, p. 10232; Duchateau, R., (2002) Chem. Rev., 102, p. 3525; Laine, R.M., Sulaiman, S., Brick, C., Roll, M., Tamaki, R., Asuncion, M.Z., Neurock, M., Li, Y., (2010) J. Am. Chem. Soc., 132, p. 3708; Wann, D.A., Reilly, A.M., Rataboul, F., Lickiss, P.D., Rankin, D.W.H., (2009) Z. Naturforsch. B, 64, p. 1269; Wann, D.A., Less, R.J., Rataboul, F., McCaffrey, P.D., Reilly, A.M., Robertson, H.E., Lickiss, P.D., Rankin, D.W.H., (2008) Organometallics, 27, p. 4183; Wann, D.A., Zakharov, A.V., Reilly, A.M., McCaffrey, P.D., Rankin, D.W.H., (2009) J. Phys. Chem. A, 113, p. 9511; Wann, D.A., Rataboul, F., Reilly, A.M., Robertson, H.E., Lickiss, P.D., Rankin, D.W.H., (2009) Dalton Trans., p. 6843; Agaskar, P.A., (1990) Inorg. Chem., 29, p. 1603; Gao, J.-G., Wang, S.-C., Zhang, X.-J., Run, M.-T., (2005) Youjigui Cailiao, 19, p. 5; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Pople, J.A., (2004) Gaussian 03, , revision C.02; Gaussian, Inc.: Wallingford, CT;, National Service for Computational Chemistry Software (NSCCS). (accessed Mar 2011)Krishnan, R., Frisch, M.J., Pople, J.A., (1980) J. Chem. Phys., 72, p. 4244; McLean, A.D., Chandler, G.S., (1980) J. Chem. Phys., 72, p. 5639; Becke, A.D., (1993) J. Chem. Phys., 98, p. 5648; Lee, C., Yang, W., Parr, R.G., (1992) Phys. Rev. B, 37, p. 785; Miehlich, B., Savin, A., Stoll, H., Preuss, H., (1989) Chem. Phys. Lett., 157, p. 200; Stewart, J.J.P., (2007) J. Mol. Model., 13, p. 1173; Thiel, W.A., Voityuk, A., (1992) Theor. Chim. Acta, 81, p. 391; Vandevondele, J., Krack, M., Mohamed, F., Parrinello, M., Chassaing, T., Hutter, J., (2005) Comput. Phys. Commun., 167, p. 103;, EaStCHEM Research Computing Facility. This facility is partially supported by the eDIKT initiative (, G., Donadio, D., Parrinello, M., (2007) J. Chem. Phys., 126, p. 014101; Zakharov, A.V., Personal communicationSipachev, V.A., (1985) THEOCHEM, 121, p. 143; Sipachev, V.A., (2001) J. Mol. Struct., 567, p. 67; Huntley, C.M., Laurenson, G.S., Rankin, D.W.H., (1980) J. Chem. Soc., Dalton Trans., p. 954; Fleischer, H., Wann, D.A., Hinchley, S.L., Borisenko, K.B., Lewis, J.R., Mawhorter, R.J., Robertson, H.E., Rankin, D.W.H., (2005) Dalton Trans., p. 3221; Hinchley, S.L., Robertson, H.E., Borisenko, K.B., Turner, A.R., Johnston, B.F., Rankin, D.W.H., Ahmadian, M., Cowley, A.H., (2004) Dalton Trans., p. 2469; Ross, A.W., Fink, M., Hilderbrandt, R., Wilson, A.J.C., (1992) International Tables for Crystallography, 100, p. 245. , In;, Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands,; Vol., p; Blake, A.J., Brain, P.T., McNab, H., Miller, J., Morrison, C.A., Parsons, S., Rankin, D.W.H., Smart, B.A., (1996) J. Phys. Chem., 100, p. 12280; Brain, P.T., Morrison, C.A., Parsons, S., Rankin, D.W.H., (1996) J. Chem. Soc., Dalton Trans., p. 4589; Mitzel, N.W., Rankin, D.W.H., (2003) Dalton Trans., p. 3650; Hamilton, W.C., (1965) Acta Crystallogr., 18, p. 502; Baidina, I.A., Podberezskaya, N.V., Alekseev, V.I., Martynova, T.N., Borisov, S.V., Kanev, A.N., (1980) J. Struct. Chem., 20, p. 550; Bonhomme, C., Tolédano, P., Maquet, J., Livage, J., Bonhomme-Coury, L., (1997) J. Chem. Soc., Dalton. Trans., p. 1617; Meier, W.M., Olson, D.H., Baerlocher, C., (1996) Atlas of Zeolite Types, , Elsevier: London;, The International Zeolite Association Structure Commission (see)Mellot-Draznieks, C., Girard, S., Férey, G., (2002) J. Am. Chem. Soc., 124, p. 15326. , See:;;, for a discussion of possible structures; Kawahara, K., Hagiwara, Y., Shimojima, A., Kuroda, K., (2008) J. Mater. Chem., 18, p. 3193; Pluth, J.J., Smith, J.V., (1980) J. Am. Chem. Soc., 102, p. 4704; Smolin, Yu.I., Shepelev, Yu.F., Pomes, R., Hoebbel, D., (1979) Kristallografiya, 24, p. 38; Smolin, Yu.I., Shepelev, Yu.F., Butikova, I.K., (1972) Kristallografiya, 17, p. 15; Wiebcke, M., Emmer, J., Felsche, J., Hoebbel, D., Engelhardt, G., (1994) Z. Anorg. Allg. Chem., 620, p. 757; Emmer, J., Wiebcke, M., (1994) J. Chem. Soc., Chem. Commun., p. 2079; Asuncion, M.Z., Hasegawa, I., Kampf, J.W., Laine, R.M., (2005) J. Mater. Chem., 15, p. 2114; Day, V.W., Klemperer, W.G., Mainz, V.V., Millar, D.M., (1985) J. Am. Chem. Soc., 107, p. 8262; Auner, N., Ziemer, B., Herrschaft, B., Ziche, W., John, P., Weis, J., (1999) Eur. J. Inorg. Chem., 7, p. 1087; Slebodnick, C., Angel, R.J., Hanson, B.E., Agaskar, P.A., Soler, T., Falvello, L.R., (2008) Acta Crystallogr., Sect. B: Struct. Sci., 64, p. 330; Clark, J.C., Saengkerdsub, S., Eldridge, G.T., Campana, C., Barnes, C.E., (2006) J. Organomet. Chem., 691, p. 3213


  • organosilicon derivative
  • article
  • chemical structure
  • chemistry
  • gas
  • molecular dynamics
  • quantum theory
  • Gases
  • Models, Molecular
  • Molecular Dynamics Simulation
  • Molecular Structure
  • Organosilicon Compounds
  • Quantum Theory

Cite this