TY - JOUR
T1 - The performance of protected areas for biodiversity under climate change
AU - Thomas, Chris D.
AU - Gillingham, Phillipa K.
PY - 2015/1/1
Y1 - 2015/1/1
N2 - Global environmental changes have been driving large-scale shifts in the distributions of species and in the composition of biological communities. This has thrown the continuing value of Protected Areas (PAs) into question, given that PAs remain static, whereas species move, and they are predicted to continue to move under future climate scenarios. We consider empirical evidence on the observed performance of PAs during the last 40 years of anthropogenic climate change. Despite some losses of populations and species, PAs have continued to accommodate many species, which have shifted to higher elevations, to polewards-facing aspects, and into cooler microhabitats within PAs as the climate has warmed. Even when species have declined in some PAs, they often remain more abundant inside than outside PAs. Furthermore, losses from some PAs are offset by increases in others. As species expand their ranges polewards across fragmented landscapes in response to climate warming, the majority are disproportionately colonizing PAs as they go. Hence, PA networks are acting as stepping-stones of suitable breeding conditions and facilitating range shifts, with many species remaining protected across PA networks as a whole. Finally, there is some evidence that appropriate management of PAs may be able to slow climate-related declines and accelerate expansions. The 40-year track record of species responding to environmental change in PAs suggests that networks of PAs have been essential to biodiversity conservation and are likely to continue to fulfil this role in the future. The challenge for managers will be to consider the balance between retaining current species and encouraging colonization by new species.
AB - Global environmental changes have been driving large-scale shifts in the distributions of species and in the composition of biological communities. This has thrown the continuing value of Protected Areas (PAs) into question, given that PAs remain static, whereas species move, and they are predicted to continue to move under future climate scenarios. We consider empirical evidence on the observed performance of PAs during the last 40 years of anthropogenic climate change. Despite some losses of populations and species, PAs have continued to accommodate many species, which have shifted to higher elevations, to polewards-facing aspects, and into cooler microhabitats within PAs as the climate has warmed. Even when species have declined in some PAs, they often remain more abundant inside than outside PAs. Furthermore, losses from some PAs are offset by increases in others. As species expand their ranges polewards across fragmented landscapes in response to climate warming, the majority are disproportionately colonizing PAs as they go. Hence, PA networks are acting as stepping-stones of suitable breeding conditions and facilitating range shifts, with many species remaining protected across PA networks as a whole. Finally, there is some evidence that appropriate management of PAs may be able to slow climate-related declines and accelerate expansions. The 40-year track record of species responding to environmental change in PAs suggests that networks of PAs have been essential to biodiversity conservation and are likely to continue to fulfil this role in the future. The challenge for managers will be to consider the balance between retaining current species and encouraging colonization by new species.
KW - Anthropocene
KW - Conservation
KW - Range shifts
UR - http://www.scopus.com/inward/record.url?scp=84926630665&partnerID=8YFLogxK
U2 - 10.1111/bij.12510
DO - 10.1111/bij.12510
M3 - Article
AN - SCOPUS:84931569558
SN - 0024-4066
VL - 115
SP - 718
EP - 730
JO - Biological Journal of the Linnean Society
JF - Biological Journal of the Linnean Society
IS - 3
ER -