The Sequential Dominance Argument for the Independence Condition of Expected Utility Theory

Research output: Contribution to journalArticlepeer-review

Abstract

Independence is the condition that, if X is preferred to Y, then a lottery between X and Z is preferred to a lottery between Y and Z given the same probability of Z. Is it rationality required that one’s preferences conform to Independence? The main objection to this requirement is that it would rule out the alleged rationality of Allais and Ellsberg Preferences. In this paper, I put forward a sequential dominance argument with fairly weak assumptions for a variant of Independence (called Independence for Constant Prospects), which shows that Allais and Ellsberg Preferences are irrational. Hence this influential objection (that is, the alleged rationality of Allais and Ellsberg Preferences) can be rebutted. I also put forward a number of sequential dominance arguments that various versions of Independence are requirements of rationality. One of these arguments is based on very minimal assumptions, but the arguments for the versions of Independence which are strong enough to serve in the standard axiomatization of Expected Utility Theory need notably stronger assumptions.
Original languageEnglish
Number of pages19
JournalPhilosophy and Phenomenological Research
Early online date5 May 2020
DOIs
Publication statusE-pub ahead of print - 5 May 2020

Bibliographical note

© 2020 Philosophy and Phenomenological Research, Inc. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details.

Cite this