Abstract
The twist-bend nematic phase is a recently discovered liquid-crystalline phase that exhibits macroscopic chirality even when formed from achiral materials, and as such presents a unique testbed for studies concerning the spontaneous breaking of mirror symmetry in soft matter. It is primarily exhibited by materials whose molecular structure is composed of two rigid aromatic units (such as biphenyl connected by a flexible spacer). The local structure of the NTB phase is nematic-like - with molecules having an average orientational order but no positional order - with a nanoscale helix where the pitch is of the order of several nanometres. A helix is chiral, and so the bulk NTB phase - in the absence of a biasing chiral environment - spontaneously separates into macroscopic domains of opposite handedness. After discussing the structure of this mesophase and its elucidation this concept article presents the molecular factors that determine its incidence. The apparent dependency primarily on molecular shape and bend-angle rather than particular functional group combinations manifests in this mesophase being exhibited on length scales far beyond those of simple liquid-crystalline dimers, not only in oligomers and polymers but in aqueous suspensions of micron sized helical particles.
Original language | English |
---|---|
Pages (from-to) | 1-9 |
Number of pages | 9 |
Journal | Chemistry : A European Journal |
Early online date | 28 Apr 2017 |
DOIs | |
Publication status | E-pub ahead of print - 28 Apr 2017 |