TY - JOUR
T1 - Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens
AU - Maia, Margarida R. G.
AU - Chaudhary, Lal C.
AU - Bestwick, Charles S.
AU - Richardson, Anthony J.
AU - McKain, Nest
AU - Larson, Tony R.
AU - Graham, Ian A.
AU - Wallace, Robert J.
PY - 2010/2/18
Y1 - 2010/2/18
N2 - Background: Health-promoting polyunsaturated fatty acids (PUFA) are abundant in forages grazed by ruminants and in vegetable and fish oils used as dietary supplements, but only a small proportion of PUFA finds its way into meat and milk, because of biohydrogenation in the rumen. Butyrivibrio fibrisolvens plays a major role in this activity. The aim of this study was to investigate the mechanisms by which PUFA affect the growth of B. fibrisolvens, how PUFA are metabolized and the metabolic response to growth in the presence of PUFA.Results: Linoleic acid (LA; cis-9, cis-12-18:2) and alpha-linolenic acid (LNA; cis-9, cis-12, cis-15-18:3) increased the lag phase of B. fibrisolvens JW11, LNA having the greater effect. Growth was initiated only when the PUFA had been converted to vaccenic acid (VA; trans-11-18:1). The major fish oil fatty acids, eicosapentaenoic acid (EPA; 20:5(n-3)) and docosahexaenoic acid (DHA; 22:6(n-3)), were not metabolized and prevented growth. Cellular integrity, as determined fluorimetrically by propidium iodide (PI) ingression, was affected as much by 18:1 fatty acids, including VA, as 18:2 fatty acids. The methyl esters of LNA, LA, EPA and DHA had no effect on growth or other measurements. The ATP pool decreased by 2/3 when LA was added to growing bacteria, whereas most acyl CoA pools decreased by >96%.Conclusions: It was concluded that biohydrogenation occurs to enable B. fibrisolvens to survive the bacteriostatic effects of PUFA, and that the toxicity of PUFA is probably mediated via a metabolic effect rather than disruption of membrane integrity.
AB - Background: Health-promoting polyunsaturated fatty acids (PUFA) are abundant in forages grazed by ruminants and in vegetable and fish oils used as dietary supplements, but only a small proportion of PUFA finds its way into meat and milk, because of biohydrogenation in the rumen. Butyrivibrio fibrisolvens plays a major role in this activity. The aim of this study was to investigate the mechanisms by which PUFA affect the growth of B. fibrisolvens, how PUFA are metabolized and the metabolic response to growth in the presence of PUFA.Results: Linoleic acid (LA; cis-9, cis-12-18:2) and alpha-linolenic acid (LNA; cis-9, cis-12, cis-15-18:3) increased the lag phase of B. fibrisolvens JW11, LNA having the greater effect. Growth was initiated only when the PUFA had been converted to vaccenic acid (VA; trans-11-18:1). The major fish oil fatty acids, eicosapentaenoic acid (EPA; 20:5(n-3)) and docosahexaenoic acid (DHA; 22:6(n-3)), were not metabolized and prevented growth. Cellular integrity, as determined fluorimetrically by propidium iodide (PI) ingression, was affected as much by 18:1 fatty acids, including VA, as 18:2 fatty acids. The methyl esters of LNA, LA, EPA and DHA had no effect on growth or other measurements. The ATP pool decreased by 2/3 when LA was added to growing bacteria, whereas most acyl CoA pools decreased by >96%.Conclusions: It was concluded that biohydrogenation occurs to enable B. fibrisolvens to survive the bacteriostatic effects of PUFA, and that the toxicity of PUFA is probably mediated via a metabolic effect rather than disruption of membrane integrity.
KW - CONJUGATED LINOLEIC-ACID
KW - RUMEN BACTERIA
KW - STEARIC-ACID
KW - CLOSTRIDIUM-PROTEOCLASTICUM
KW - OXIDATIVE-PHOSPHORYLATION
KW - OLEIC-ACID
KW - FISH-OIL
KW - HYDROGENATION
KW - METABOLISM
KW - PATTERNS
UR - http://www.scopus.com/inward/record.url?scp=77949399460&partnerID=8YFLogxK
U2 - 10.1186/1471-2180-10-52
DO - 10.1186/1471-2180-10-52
M3 - Article
SN - 1471-2180
VL - 10
SP - -
JO - Bmc microbiology
JF - Bmc microbiology
M1 - 52
ER -