Traffic-aware cell management for green ultra-dense small cell networks

Research output: Contribution to journalArticlepeer-review

Abstract

To reduce the power consumption of fifth-generation ultradense small-cell networks, base stations can be switched to low-power sleep modes when local traffic levels are low. In this paper, a novel sleep mode control algorithm is proposed to control such sleep modes. The algorithm innovates a concept called traffic-aware cell management (TACM). It involves cell division, cell death, and cell migration to represent adaptations of networks, where the state transitions of base stations are controlled. Direction of arrival (DOA) is adopted for distributed decision making. The TACM algorithm aims at reducing the network power consumption while alleviating the impacts of applying sleep modes, such as mitigating system overheads and reducing user transmission power. The TACM algorithm is compared with a recent consolidated baseline scheme by simulation on networks with unbalanced traffic distributions and with base stations at random locations. In contrast, the TACM algorithm shows a significant improvement in mitigating system overheads due to the absence of load information exchange overhead and up to 72 times less switching frequency. Up to 81% network power consumption can be reduced compared with the baseline scheme if considering high energy consumption of switching transient states. In addition, at a low traffic level, average uplink transmission power is reduced by 79% comparatively. Furthermore, the impact of important performance-governing parameters of the TACM algorithm is analyzed. The insensitivity to the estimation accuracy of DOA is also demonstrated. The results show that the proposed TACM algorithm has a comprehensive advantage of power reduction and overhead mitigation over the baseline scheme.

Original languageEnglish
Article number7484757
Pages (from-to)2600-2614
Number of pages15
JournalIEEE Transactions on Vehicular Technology
Volume66
Issue number3
Early online date7 Jun 2016
DOIs
Publication statusE-pub ahead of print - 7 Jun 2016

Bibliographical note

(c) 2016, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

Keywords

  • Energy saving
  • random topology
  • sleep modes
  • ultradense small-cell networks (SCNs)

Cite this