Abstract
The endosymbiotic bacteria Wolbachia can invade insect populations by modifying host reproduction through cytoplasmic incompatibility (CI), an effect that results in embryonic lethality when Wolbachia-carrying males mate with Wolbachia-free females. Here we describe a transgenic system for recreating CI in the major arbovirus vector Aedes aegypti using CI factor (cif) genes from wAlbB, a Wolbachia strain currently being deployed to reduce dengue transmission. CI-like sterility is induced when cifA and cifB are co-expressed in testes; this sterility is rescued by maternal cifA expression, thereby reproducing the pattern of Wolbachia-induced CI. Expression of cifB alone is associated with extensive DNA damage and disrupted spermatogenesis. The strength of rescue by maternal cifA expression is dependent on the comparative levels of cifA/cifB expression in males. These findings are consistent with CifB acting as a toxin and CifA as an antitoxin, with CifA attenuating CifB toxicity in both the male germline and in developing embryos. These findings provide important insights into the interactions between cif genes and their mechanism of activity and provide a foundation for the building of a cif gene-based drive system in Ae. aegypti.
Original language | English |
---|---|
Article number | 869 |
Journal | Nature Communications |
Volume | 15 |
Issue number | 1 |
DOIs | |
Publication status | Published - 29 Jan 2024 |
Bibliographical note
Publisher Copyright:© 2024, The Author(s).