Abstract
We report the measurement of reaction cross sections (σ_{R}^{ex}) of ^{27,29}F with a carbon target at RIKEN. The unexpectedly large σ_{R}^{ex} and derived matter radius identify ^{29}F as the heaviest two-neutron Borromean halo to date. The halo is attributed to neutrons occupying the 2p_{3/2} orbital, thereby vanishing the shell closure associated with the neutron number N=20. The results are explained by state-of-the-art shell model calculations. Coupled-cluster computations based on effective field theories of the strong nuclear force describe the matter radius of ^{27}F but are challenged for ^{29}F.
Original language | English |
---|---|
Article number | 222504 |
Number of pages | 7 |
Journal | Physical Review Letters |
Volume | 124 |
Issue number | 22 |
DOIs | |
Publication status | Published - 5 Jun 2020 |