Using Parahydrogen Induced Polarization to Study Steps in the Hydroformylation Reaction.

Simon Duckett, Dexin Guan, Cyril Godard, Stacey Polas, Robert Tooze, Adrian C. Whitwood

Research output: Contribution to journalArticlepeer-review

Abstract

A range of iridium complexes, Ir(η3-C3H5)(CO)(PR2R’)2 (1a-1e) [where 1a, PR2R’ = PPh3, 1b P(p-tol)3, 1c PMePh2, 1d PMe2Ph and 1e PMe3] were synthesized and their reactivity as stoichiometric hydroformylation precursors studied. Para-hydrogen assisted NMR spectroscopy detected the following intermediates: Ir(H)2(η3-C3H5)(CO)(PR2R’) (2a-e), Ir(H)2(η1-C3H5)(CO)(PR2R’)2 (4d-e), Ir(H)2(η1-C3H5)(CO)2(PR2R’) (10a-e), Ir(H)2(CO-C3H5)(CO)2(PR2R’) (11a-c), Ir(H)2(CO-C3H7)(CO)2(PR2R’) (12a-c) and Ir(H)2(CO-C3H5)(CO)(PR2R’)2 (13d-e). Some of these species exist as two geometric isomers according to their multinuclear NMR characteristics. The NMR studies suggest a role for the following 16 electron species in these reactions: Ir(η3-C3H5)(CO)(PR2R’), Ir(η1-C3H5)(CO)(PR2R’)2, Ir(η1-C3H5)(CO)2(PR2R’), Ir(CO-C3H5)(CO)2(PR2R’), Ir(CO-C3H7)(CO)2(PR2R’) and Ir(CO-C3H5)(CO)(PR2R’)2. Their role is linked to several 18 electron species in order to confirm the route by which hydroformylation and hydrogenation proceeds.
Original languageEnglish
Article numberC8DT04723E
Number of pages14
JournalDalton Transactions
Early online date25 Jan 2019
DOIs
Publication statusE-pub ahead of print - 25 Jan 2019

Bibliographical note

© The Royal Society of Chemistry 2019. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details.

Cite this