Validation of IMS-MS as a screening tool to identify type II kinase inhibitors of FGFR1 kinase

Helen Beeston, Tobias Klein, Richard Norman, Julie Ann Tucker, Malcolm Anderson, Alison E. Ashcroft, Geoff Holdgate

Research output: Contribution to journalArticlepeer-review


The protein kinase FGFR1 regulates cellular processes in human development. As over-activity of FGFR1 is implicated with cancer, effective inhibitors are in demand. Type I inhibitors, which bind to the active form of FGFR1, are less effective than type II inhibitors, which bind to the inactive form. Screening to distinguish between type I and type II inhibitors is required.

X-Ray crystallography was used to indicate whether a range of potential inhibitors bind to the active or inactive FGFR1 kinase conformation. The binding affinity of each ligand to FGFR1 was measured using biochemical methods. ESI-IMS-MS in conjunction with collision-induced protein unfolding generated a conformational profile of each FGFR1-ligand complex. The results indicate that the protein’s conformational profile depends on whether the inhibitor is type I or type II.

X-Ray crystallography confirmed which of the kinase inhibitors bind to the active or inactive form of FGFR1 kinase. Collision-induced unfolding combined with ESI-IMS-MS showed distinct differences in the FGFR1 folding landscape for type I and type II inhibitors. Biochemical studies indicated a similar range of FGFR1 affinities for both types of inhibitors, thus providing confidence that the conformational variations detected using ESI-IMS-MS can be interpreted unequivocally and that this is an effective screening method.

A robust ESI-IMS-MS method has been implemented to distinguish between the binding mode of type I and type II inhibitors by monitoring the conformational unfolding profile of FGFR1. This rapid method requires low sample concentrations and could be used as a high-throughput screening technique for the characterisation of novel kinase inhibitors.
Original languageEnglish
JournalRapid Communications in Mass Spectrometry
Early online date26 May 2021
Publication statusE-pub ahead of print - 26 May 2021

Bibliographical note

© 2021 The Authors

Cite this