Why is the antipodal effect in closo-1-SB 9H 9 so large? A possible explanation based on the geometry from the concerted use of gas electron diffraction and computational methods

D. Hnyk, D.A. Wann, J. Holub, S. Samdal, D.W.H. Rankin

Research output: Contribution to journalArticlepeer-review


The molecular structure of 1-thia-closo-decaborane(9), 1-SB 9H 9, has been determined by the concerted use of gas electron diffraction and quantum-chemical calculations. Assuming C 4v symmetry, the cage structure was distorted from a symmetrically bicapped square antiprism (D 4d symmetry) mainly through substantial expansion of the tetragonal belt of boron atoms adjacent to sulfur. The S-B and (B-B) mean distances are well determined with r h1 = 193.86(14) and 182.14(8) pm, respectively. Geometrical parameters calculated using the MP2(full)/6-311++G** method and at levels reported earlier [MP2(full)/6-311G**, B3LYP/6-311G** and B3LYP/cc-pVQZ], as well as calculated vibrational amplitudes and 11B NMR chemical shifts, are in good agreement with the experimental findings. In particular, the so-called antipodal chemical shift of apical B(10) (71.8 ppm) is reproduced well by the GIAO-MP2 calculations and its large magnitude is schematically accounted for, as is the analogous antipodal chemical shift of B(12) in the twelve-vertex closo-1-SB 11H 11. © The Royal Society of Chemistry 2011.
Original languageEnglish
Pages (from-to)5734-5737
JournalDalton Transactions
Issue number21
Publication statusPublished - 7 Jun 2011

Bibliographical note

Cited By (since 1996):1

Export Date: 1 October 2013

Source: Scopus

doi: 10.1039/c1dt10053j

Language of Original Document: English

Correspondence Address: Hnyk, D.; Institute of Inorganic Chemistry of the ASCR, v.v.i. No. 1001, CZ-250 68, Husinec-e, Czech Republic; email: [email protected]

References: Wade, K., (1976) Adv. Inorg. Chem. Radiochem., 18, p. 1; Pretzer, W.R., Hilty, T.K., Rudolph, R.W., (1975) Inorg. Chem., 14, p. 2459. , For the meaning of the antipodal effect in closo-heteroboranes see:; Bühl, M., Schleyer, P.V.R., Havlas, Z., Hnyk, D., Hemánek, S., (1991) Inorg. Chem., 30, p. 3107; Hnyk, D., Vajda, E., Bühl, M., Schleyer, P.V.R., (1992) Inorg. Chem., 31, p. 2464; Møllendal, H., Samdal, S., Holub, J., Hnyk, D., (2002) Inorg. Chem., 41, p. 4574; Hnyk, D., Rankin, D.W.H., (2009) Dalton Trans., p. 585. , See, for example; Bühl, M., Schleyer, P.V.R., (1992) J. Am. Chem. Soc., 114, p. 477; Blake, A.J., Brain, P.T., McNab, H., Miller, J., Morrison, C.A., Parsons, S., Rankin, D.W.H., Smart, B.A., (1996) J. Phys. Chem., 100, p. 12280; Brain, P.T., Morrison, C.A., Parsons, S., Rankin, D.W.H., (1996) J. Chem. Soc., Dalton Trans., p. 4589; Mitzel, N.W., Rankin, D.W.H., (2003) Dalton Trans., p. 3650; Smith, W.L., Meneghelli, B.J., Thompson, D.A., Klymko, P., McClure, N., Bower, M., Rudolph, R.W., (1977) Inorg. Chem., 16, p. 3008; Pretzer, W.R., Rudolph, R.W., (1976) J. Am. Chem. Soc., 98, p. 1441; Hamilton, E.J.M., Kulthysev, R.G., Du, B., Meyers, E.A., Liu, S., Hadad, Ch.M., Shore, S.G., (2006) Chem.-Eur. J., 12, p. 2571. , and references therein NICS is a three-dimensional aromaticity probe based on negative absolute magnetic shieldings at ring or cage centres:; Schleyer, P.V.R., Maercker, C., Dransfeld, A., Jiao, H., Hommes, N.J.R., (1996) J. Am. Chem. Soc., 118, p. 6317. , For the three-dimensional aromaticity of boron clusters see, for example; Schleyer, P.V.R., Najafian, K., (1998) Inorg. Chem., 37, p. 3454; Holub, J., Bakardjiev, M., Tíbr, B., Hnyk, D., Tok, O.L., Wrackmeyer, B., (2002) Inorg. Chem., 41, p. 2817; Zeil, W., Haase, J., Wegmann, L., (1966) Z. Instrumentenkd., 74, p. 84; Bastiansen, O., Graber, R., Wegmann, L., (1969) Balzers High Vak. Rep., 25, p. 1; Hinchley, S.L., Robertson, H.E., Borisenko, K.B., Turner, A.R., Johnston, B.F., Rankin, D.W.H., Ahmadian, M., Cowley, A.H., (2004) Dalton Trans., p. 2469; Ross, A.W., Fink, M., Hilderbrandt, R., (1992) International Tables for Crystallography, (Ed.), , http://www.nsccs.ac.uk, A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, Netherlands, 245 National Service for Computational Chemistry Software (NSCCS). URL; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr.J.A., Pople, J.A., (2004) Gaussian 03, Revision C.02, , Gaussian Inc., Pittsburgh PA; Sipachev, A., (1985) THEOCHEM, 121, p. 143; Sipachev, V.A., (2001) J. Mol. Struct., 567, p. 67; Ditchfield, R., (1974) Mol. Phys., 27, p. 789; Wolinski, K., Hilton, J.F., Pulay, P., (1990) J. Am. Chem. Soc., 112, p. 8251; Gauss, J., (1993) J. Chem. Phys., 99, p. 3629; Kutzelnigg, W., Fleischer, U., Schindler, M., (1990) NMR Basic Principles and Progress, pp. 165-262. , Springer, Berlin


  • Antiprisms
  • Boron atom
  • Cage structures
  • Gas electron diffraction
  • Geometrical parameters
  • NMR chemical shifts
  • Quantum-chemical calculation
  • Vibrational amplitudes
  • Boron
  • Boron compounds
  • Chemical shift
  • Computational geometry
  • Quantum chemistry
  • Sulfur
  • Electron diffraction

Cite this