Abstract
Plants respond to synthetic chemicals by eliciting a xenobiotic response (XR) that enhances the expression of detoxifying enzymes such as glutathione transferases (GSTs). In agrochemistry, the ability of safeners to induce an XR is used to increase herbicide detoxification in cereal crops. Based on the responsiveness of the model plant Arabidopsis thaliana to the rice safener fenclorim (4,6-dichloro-2-phenylpyrimidine), a series of related derivatives was prepared and tested for the ability to induce GSTs in cell suspension cultures. The XR in Arabidopsis could be divided into rapid and slow types depending on subtle variations in the reactivity (electrophilicity) and chemical structure of the derivatives. In a comparative microarray study, Arabidopsis cultures were treated with closely related compounds that elicited rapid (fenclorim) and slow (4-chloro-6-methyl-2-phenylpyrimidine) XRs. Both chemicals induced major changes in gene expression, including a coordinated suppression in cell wall biosynthesis and an up-regulation in detoxification pathways, whereas only fenclorim selectively induced sulfur and phenolic metabolism. These transcriptome studies suggested several linkages between the XR and oxidative and oxylipin signaling. Confirming links with abiotic stress signaling, suppression of glutathione content enhanced GST induction by fenclorim, whereas fatty acid desaturase mutants, which were unable to synthesize oxylipins, showed an attenuated XR. Examining the significance of these studies to agrochemistry, only those fenclorim derivatives that elicited a rapid XR proved effective in increasing herbicide tolerance (safening) in rice.
Original language | English |
---|---|
Pages (from-to) | 32268-32276 |
Number of pages | 9 |
Journal | Journal of Biological Chemistry |
Volume | 286 |
Issue number | 37 |
DOIs | |
Publication status | Published - 16 Sept 2011 |
Keywords
- GLUTATHIONE S-TRANSFERASES
- REDOX REGULATION
- PLANT DEFENSE
- ACID
- DETOXIFICATION
- METABOLISM
- EXPRESSION
- IDENTIFICATION
- INDUCTION
- BINDING