Badly approximable points on curves are winning

Victor Beresnevich

(joint work with Erez Nesharim and Lei Yang)

Moscow zoom seminars – 7 May 2020

Let \(r = (r_1, \ldots, r_n) \) be an \(n \)-tuple of weights, \(I \subset \mathbb{R} \) be an interval and \(\varphi : I \to \mathbb{R}^n \) be a nondegenerate analytic map. Then the set

\[
\{ x \in I : \varphi(x) \text{ is } r\text{-badly approximable} \}
\]

is absolute winning on \(I \).

An analytic map \(\varphi = (\varphi_1, \ldots, \varphi_n) : I \to \mathbb{R}^n \) is nondegenerate if 1, \(\varphi_1, \ldots, \varphi_n \) are linearly independent over \(\mathbb{R} \).

For example, 1, \(x, x^2, \ldots, x^n \).
Theorem (Dirichlet, 1842)

For any \(x \in \mathbb{R}^n \setminus \mathbb{Q}^n \) there are infinitely many \(p/q \in \mathbb{Q}^n \) such that

\[
\max_{1 \leq i \leq n} \left| x_i - \frac{p_i}{q} \right| < \frac{1}{q^{1+1/n}}.
\]

Definition (Badly approximable points)

\(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \setminus \mathbb{Q}^n \) is called badly approximable \((x \in \text{Bad}_n) \) if

\[
\exists \ c > 0 \quad \max_{1 \leq i \leq n} \left| x_i - \frac{p_i}{q} \right| \geq \frac{c}{q^{1+1/n}} \quad \text{for all } q \in \mathbb{N} \text{ and } p, \ldots, p_n \in \mathbb{Z}.
\]

- Real algebraic numbers of degree 2 are in \(\text{Bad}_1 \).
- \(e \not\in \text{Bad}_1 \).
- It is not known if \(\text{Bad}_1 \) contains any other algebraic numbers.
- \(\text{Leb}(\text{Bad}_1) = 0. \) \((\text{Borel 1909}) \quad \dim_H \text{Bad}_1 = 1. \) \((\text{Jarník 1928}) \)
- If \(\deg_{\mathbb{Q}}(\alpha) = n + 1 \) then \(\alpha \in \text{Bad}_n \). \((\text{Perron 1921}) \)
- \(\text{Bad}_n \) is uncountable \((\text{Davenport 1964}) \)
The dimension of Bad\((n) \)

Theorem (W.M. Schmidt, 1966)

\[
\dim \text{Bad}(n) = n.
\]

Furthermore, Bad\((n) \) is winning.

Schmidt’s Game involves 2 players: Alice and Bob, and 0 < \(\alpha, \beta < 1 \). To start the game Bob chooses a closed ball \(B_0 \) of radius \(r(B_0) > 0 \). Then for \(n = 0, 1, 2, \ldots \), Alice chooses a closed ball \(A_{n+1} \subset B_n \) of radius \(\alpha r(B_n) \), and then Bob chooses a closed ball \(B_{n+1} \subset A_{n+1} \) of radius \(\beta r(A_{n+1}) \).

Definition

\(S \subset \mathbb{R}^n \) is \(\alpha \)-winning if Alice has a strategy to ensure that \(\bigcap_{n=1}^{\infty} B_n \subset S \ \forall \beta \).

Properties of Schmidt’s winning sets:

- Any winning set has full Hausdorff dimension.
- An affine transformation of a winning set is a winning set.
- A countable intersection of \(\alpha \)-winning sets is \(\alpha \)-winning.
Definition (Weighted Badly approximable points)

Let \(\mathbf{r} = (r_1, \ldots, r_n), r_i \geq 0 \) and \(r_1 + \cdots + r_n = 1 \) (\(\mathbf{r} \) is called \textit{weights}). The point \(\mathbf{x} \in \mathbb{R}^n \) is called \(\mathbf{r} \)-badly approximable (\(\mathbf{x} \in \text{Bad}(\mathbf{r}) \)) if \(\exists \ c > 0 \) such that

\[
\max_{1 \leq i \leq n} q^{1+r_i} \left| \frac{p_i}{q} \right| \geq c \quad \text{for all } q \in \mathbb{N} \text{ and } p_i \in \mathbb{Z}.
\]

\[
\bigcap_{r_1 + r_2 = 1} \text{Bad}(r_1, r_2) = \emptyset \quad \text{implies \ Littlewood’s conjecture.}
\]

Conjecture (Littlewood, 1930)

Let \((x_1, \ldots, x_n) \in \mathbb{R}^n, n \geq 2 \). Then for any \(\varepsilon > 0 \) there are infinitely many \(q \in \mathbb{N} \) and \(p_1, \ldots, p_n \in \mathbb{Z} \) such that

\[
\left| \frac{p_1}{q} \right| \cdots \left| \frac{p_n}{q} \right| < \varepsilon q^{-n-1} = \prod_{i=1}^{n} \left(\frac{\varepsilon^{1/n}}{q^{1+r_i}} \right).
\]

Conjecture (Schmidt, 1982)

Let \(n = 2 \). Then \(\text{Bad}(\frac{1}{3}, \frac{2}{3}) \cap \text{Bad}(\frac{2}{3}, \frac{1}{3}) \neq \emptyset. \)
The dimension of $\text{Bad}(r)$

Kristensen, Thorn, Velani (2006) \[\Rightarrow \dim \text{Bad}(r) = n. \]
Kleinbock, Weiss (2010)

use modified Schmidt’s game: the metric on \mathbb{R}^n depends on r. This does not imply that $\text{Bad}(r_1) \cap \text{Bad}(r_2)$ is non-empty and therefore does not prove

Schmidt’s conjecture (1982):

$$\text{Bad}(\frac{1}{3}, \frac{2}{3}) \cap \text{Bad}(\frac{2}{3}, \frac{1}{3}) \neq \emptyset.$$

Theorem (Badziahin, Pollington and Velani, 2011)

Let $n = 2$, $\theta \in \text{Bad}$, $C_\theta = \{(x, y) \in \mathbb{R}^2 : x = \theta\}$ and the weights $r_k = (r_{k,1}, r_{k,2})$ satisfy $\lim \inf_{k \to \infty} \min\{r_{k,1}, r_{k,2}\} > 0$. Then

$$\dim \bigcap_{k=1}^{\infty} \text{Bad}(r_k) \cap C_\theta = 1.$$
Bad(r), \(n = 2 \)

Let \(n = 2 \) and \(C_\theta = \{(x, y) \in \mathbb{R}^2 : x = \theta\} \).

An (2013): If \(\theta \in \text{Bad} \) then \(\text{Bad}(r) \cap C_\theta \) is \(\frac{1}{2} \)-winning in \(C_\theta \). In particular, for any countable collection of weights \(r_k \), \(\dim(\bigcap_k \text{Bad}(r_k) \cap C_\theta) = 1 \).

Nesharim (2013): If \(\theta \in \text{Bad} \) then for any countable collection of weights \(r_k \), the intersection \(\bigcap_k \text{Bad}(r_k) \cap C_\theta \neq \emptyset \).

Nesharim, Weiss (2013): If \(\theta \in \text{Bad} \) then \(\text{Bad}(r) \cap C_\theta \) is absolute winning in \(C_\theta \). In particular, it is \(\frac{1}{2} \)-winning.

An (2016): \(\text{Bad}(r) \) is \((24\sqrt{2})^{-1} \)-winning in \(\mathbb{R}^2 \).

Nesharim, Simmons (2014): Let \(n = 2 \). Then \(\text{Bad}(r) \) is hyperplane absolute winning, in particular, it is \(\frac{1}{2} \)-winning.

Badziahin & Velani (2014): For any planar curve \(C \) which is not a straight line \(\dim(\bigcap_k \text{Bad}(r_k) \cap C) = 1 \) provided that \(\lim_{k \to \infty} \min\{r_{k,1}, r_{k,2}\} > 0 \).

An, B., Velani (2018): For any planar curve \(C \) with non-zero curvature the projection of \(\text{Bad}(r_k) \cap C \) onto any axis is \(\frac{1}{2} \)-winning.

Note: The last two papers also deal with a class of straight lines.
Lemma

\(x \in \text{Bad}(r) \) if and only if \(\exists \ c > 0 \) such that for any \(a = (a_1, \ldots, a_n) \in \mathbb{Z}_\neq 0^n \) and \(a_0 \in \mathbb{Z} \) if \(|a_i| < H^{r_i} \) for all \(1 \leq i \leq n \) then

\[
|a_0 + a_1 x_1 + \cdots + a_n x_n| \geq c H^{-1}.
\]

Remark: If \(\xi \in \mathbb{R} \) is such that \((\xi, \xi^2, \ldots, \xi^n) \in \text{Bad}(n) \), then \(\xi \) is badly approximable by algebraic numbers of degree \(n \):

\[
\xi \in B_n = \left\{ x \in \mathbb{R} : \exists \ c_1 > 0 \text{ such that } |x - \alpha| \geq c_1 H(\alpha)^{-n-1} \right\}
\text{for all algebraic } \alpha, \deg \alpha \leq n.
\]

\(H(\alpha) \) denotes the (naive) height of \(\alpha \).

Recall the Wirsing–Schmidt problem (still open for \(n \geq 3 \)):

any transcendental \(\xi \in \mathbb{R} \) belongs to

\[
\mathcal{W}_n = \left\{ x \in \mathbb{R} : \exists \ c_2 > 0 \text{ such that } |x - \alpha| < c_2 H(\alpha)^{-n-1} \right\}
\text{for infinitely many algebraic } \alpha, \deg \alpha \leq n.
\]

Fact: If \((\xi, \ldots, \xi^n) \in \text{Bad}(n) \), then \(\xi \in B_n \cap \mathcal{W}_n \).
Let $\varphi_\ell : I \to \mathbb{R}^{n_\ell}$ ($1 \leq \ell \leq L$) be non-degenerate and the weights r_k ($k \in \mathbb{N}$) satisfy $\lim \inf_{k \to \infty} \min\{r_{k,1}, \ldots, r_{k,n}\} > 0$. Then

$$\dim \bigcap_{k=1}^{\infty} \bigcap_{\ell=1}^{L} \varphi_\ell^{-1}(\text{Bad}(r_k)) = 1.$$ \hfill (1)

Let $\varphi_\ell : I \to \mathbb{R}^{n_\ell}$ ($1 \leq \ell \leq L$) be non-degenerate. Then (1) holds for any sequence of weights r_k ($k \in \mathbb{N}$).

Let $\varphi_\ell : I \to \mathbb{R}^{n_\ell}$ be any sequence of analytic non-degenerate maps. Then for any sequence of weights r_k ($k \in \mathbb{N}$)

$$\dim \bigcap_{k=1}^{\infty} \bigcap_{\ell=1}^{L} \varphi_\ell^{-1}(\text{Bad}(r_k)) = 1.$$ \hfill (2)
Main Theorem

Theorem (B., Nesharim, Yang, 2020+)

Let \(r = (r_1, \ldots, r_n) \) be an \(n \)-tuple of weights, \(I \subset \mathbb{R} \) be an interval and \(\varphi : I \to \mathbb{R}^n \) be a nondegenerate analytic map. Then the set

\[
\{ x \in I : \varphi(x) \text{ is } r\text{-badly approximable} \}
\]

is absolute winning on \(I \).

- any absolute winning set is \(\frac{1}{2} \)-winning;
- absolute winning sets are preserved by-Lipschitz maps and \(C^1 \) diffeomorphisms;
- any countable intersection of absolute winning sets is absolute winning;
- any absolute winning set has full Hausdorff dimension;
- for any absolute winning set \(S \), any open set \(U \) and any Ahlfors regular measure \(\mu \) such that \(U \cap \text{supp } \mu \neq \emptyset \) we have that

\[
\dim(S \cap U \cap \text{supp } \mu) = \dim(\text{supp } \mu).
\]
The Absolute Game (McMullen 2010) is played by Alice and Bob. Bob chooses $0 < \beta < 1$ and a closed ball B_0 of radius $r(B_0) > 0$. Then for $n = 0, 1, 2, \ldots$, Alice chooses a closed ball A_{n+1} of radius $\beta r(B_n)$, then Bob chooses a closed ball $B_{n+1} \subset B_n \setminus A_{n+1}$ of radius $\beta r(B_n)$.

Definition

$S \subset \mathbb{R}^n$ is **absolute winning** if Alice has a strategy to ensures that either for some n Bob cannot choose a ball B_{n+1}, or $\bigcap_{n=1}^{\infty} B_n \subset S$.

Lemma (Badziahin, Harrap, Nesharim, Simmons, 2018, arXiv:1804.06499)

Let $S \subset \mathbb{R}$ be a Borel subset. Suppose that $S \cap \text{supp} \mu \neq \emptyset$ for every Ahlfors regular measure μ. Then S is absolute winning.

A Borel measure μ on \mathbb{R}^d is **Ahlfors regular** if there exist $C, \alpha, \rho_0 > 0$ such that for any ball $B(x, \rho) \subset \mathbb{R}$ with $x \in \text{supp} \mu$ and $\rho \leq \rho_0$ we have that

$$C^{-1} \rho^\alpha \leq \mu(B(x, \rho)) \leq C \rho^\alpha.$$
Theorem (B., Nesharim, Yang, 2020+)

Let \(r = (r_1, \ldots, r_n) \) be an \(n \)-tuple of weights, \(I \subset \mathbb{R} \) be an interval and \(\varphi : I \to \mathbb{R}^n \) be a nondegenerate analytic map. Then the set

\[
\varphi^{-1}(\text{Bad}(r)) = \{ x \in I : \varphi(x) \text{ is } r\text{-badly approximable} \}
\]

is absolute winning on \(I \).

How do we prove this? By finding a suitable non-empty Cantor set inside this intersection.
Generalised Cantor sets of Badziahin and Valani

Let $R \in \mathbb{Z}$, $R \geq 2$ and $\mathcal{I} \mapsto \text{Par}_R(\mathcal{I})$ be a map that divides each interval in the collection \mathcal{I} into R equal closed subintervals.

Example: $R = 3$ and $\mathcal{I} = \{[0, 1]\}$

$$\mathcal{I} = \{[0, 1]\}$$

$$\text{Par}_3(\mathcal{I}) = \{[0, \frac{1}{3}], [\frac{1}{3}, \frac{2}{3}], [\frac{2}{3}, 1]\}$$

$$\text{Par}_3^2(\mathcal{I}) = \{[0, \frac{1}{9}], [\frac{1}{9}, \frac{2}{9}], \ldots\}$$

$\mathcal{J}_0 = \{I_0\}$. Then for $q = 0, 1, 2, \ldots$

- **Splitting:** $\mathcal{I}_{q+1} := \text{Par}_R(\mathcal{J}_q)$.
- **Removal:** $\mathcal{J}_{q+1} := \mathcal{I}_{q+1} \setminus \hat{\mathcal{J}_q}$.

Example: the middle third Cantor set construction

$\mathcal{K}(\mathcal{I}_q) \overset{\text{def}}{=} \bigcap_{q \geq 0} \bigcup_{l_q \in \mathcal{I}_q} l_q$
Let $h = (h_{p,q})_{0 \leq p \leq q}$ a sequence of non-negative integers.

For $q \geq 0$ write \hat{J}_q as the following union

$$\hat{J}_q = \bigcup_{p=0}^{q} \hat{J}_{p,q}.$$

If for any $0 \leq p \leq q$ we have that

$$\# \{ I \in \hat{J}_{p,q} : I \subset J \} \leq h_{p,q} \text{ for all } J \in J_p,$$

then K_∞ is called an (R,h)-Cantor set.

Theorem (Badziahin, Velani 2011)

Given an integer $R \geq 2$ and a sequence of non-negative integers $h = (h_{p,q})_{0 \leq p \leq q}$, let $t_0 = R - h_{0,0}$ and

$$t_q := R - h_{q,q} - \sum_{j=1}^{q} \frac{h_{q-j,q}}{\prod_{i=1}^{j} t_{q-i}} \quad \text{for } q \geq 1.$$

Suppose that $t_q > 0$ for all $q \geq 0$. Then every (R,h)-Cantor set is nonempty.
Dani’s correspondence

\[X_{n+1} = \frac{\text{SL}_{n+1}(\mathbb{R})}{\text{SL}_{n+1}(\mathbb{Z})} \] – the space of unimodular lattices in \(\mathbb{R}^{n+1} \):

\[g \in \text{SL}_{n+1}(\mathbb{R}) \mapsto g\mathbb{Z}^{n+1} \in X_{n+1}. \]

Mahler’s compactness theorem: \(S \subset X_{n+1} \) is bounded iff \(\exists \, \varepsilon > 0 \) s.t.

\[S \subset K_\varepsilon := \left\{ \Lambda \in X_{n+1} : \inf_{\mathbf{v} \in \Lambda, \mathbf{v} \neq 0} \| \mathbf{v} \| \geq \varepsilon \right\} \]

Given \(x \in \mathbb{R}^n \), define the matrix

\[u(x) := \begin{bmatrix} 1 & x \\ \mathbb{I}_n \end{bmatrix} \in \text{SL}_{n+1}(\mathbb{R}), \quad (3) \]

where \(\mathbb{I}_n \) is the identity matrix. For \(t \in \mathbb{R} \) let

\[a(t) := \text{diag} \{ e^t, e^{-r_1 t}, \ldots, e^{-r_n t} \}. \]

Lemma (Dani’s correspondence)

Let \(x \in \mathbb{R}^n \). Then, \(x \in \text{Bad}(r) \iff \{ a(t)u(x)\mathbb{Z}^{n+1} : t > 0 \} \) is bounded.
Using the gradient

\[\varphi(x) = (x, \varphi_2(x), \ldots, \varphi_n(x)) \]

\[r_1 \geq \cdots \geq r_n > 0. \]

\[z(x) = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & \varphi'_2(x) & \cdots & \varphi'_n(x) \\ 1 & 1 & \cdots & 1 \end{bmatrix} \]

Fact: \(a(t)u(\varphi(x))\mathbb{Z}^{n+1} \) is bounded \(\iff \) \(a(t)z(x)u(\varphi(x))\mathbb{Z}^{n+1} \) is bounded.

\[z(x)u(\varphi(x)) = \begin{bmatrix} 1 & x & \varphi_2(x) & \cdots & \varphi_n(x) \\ 1 & \varphi'_2(x) & \cdots & \varphi'_n(x) \\ 1 & 1 & \cdots & 1 \end{bmatrix} \]

\[b(l) := \text{diag} \left\{ e^{-l/n}, e^l, e^{-l/n}, \ldots, e^{-l/n} \right\} . \]
\[J_0 = \{ l_0 \}. \] For \(q = 0, 1, 2, \ldots \):

\[I_{q+1} := \text{Par}_R(J_q), \quad J_{q+1} := I_{q+1} \setminus \hat{J}_{q}, \quad \hat{J}_q = \bigcup_{p=0}^{q} \hat{J}_{p,q}. \]

Parameters: large integer \(R \) and \(\beta, \beta' > 1 \) defined by

\[e^{(1+r_1)\beta} = R \quad \text{and} \quad e^{(1+1/n)\beta'} = R. \]

\[\hat{J}_{q,q} := \{ I \in I_{q+1} : \mu(I) < (3C)^{-1} ||I||_\alpha \}. \] (4)

For \(p < q \) we use the following **condition**:

\[b(\beta'l) a(\beta(q+1))z(x)u(\varphi(x))\mathbb{Z}^{n+1} \not\subseteq K_{e^{-\epsilon\beta l}} \] for some \(x \in I \). (5)

Specifically,

\[\hat{J}_{0,q} := \left\{ I \in I_{q+1} \setminus \hat{J}_{q,q} : \exists l \in \mathbb{N}, \ q/8 \leq l \leq q/4 \text{ s.t. (5) holds} \right\} \]

and for \(q/2 < p < q \) with \(p = q - 4l \) for some \(l \in \mathbb{Z} \) define

\[\hat{J}_{p,q} := \left\{ I \in I_{q+1} \setminus \left(\hat{J}_{q,q} \cup \bigcup_{0 \leq p' < p} \hat{J}_{p',q} \right) : (5) \text{ holds} \right\}. \]
Proposition

If μ is an α-Ahlfors regular measure and $I_0 \subset I$ is a sufficiently small interval centred in $\text{supp } \mu$, then for all sufficiently large R the Cantor set defined on the previous slide is an (R, h)-Cantor set (in the sense of Badziahin-Velani) with

$$h_{q,q} \leq R - (4C)^{-2} R^\alpha, \quad h_{p,q} \leq C_1 R^{\alpha (1-\eta)(q+1-p)} \quad (0 \leq p < q),$$

where $\eta > 0$, $C > 0$ depends only of μ and C_1 is independent of R.

Theorem (Badziahin, Velani 2011)

Given an integer $R \geq 2$ and a sequence of non-negative integers $h = (h_{p,q})_{0 \leq p \leq q}$, let $t_0 = R - h_{0,0}$ and

$$t_q := R - h_{q,q} - \sum_{j=1}^{q} \frac{h_{q-j,q}}{\prod_{i=1}^{j} t_{q-i}} \quad \text{for } q \geq 1.$$

If $t_q > 0$ for all $q \geq 0$, then every (R, h)-Cantor set is nonempty.
Theorem (Badziahin, Velani 2011)

Given an integer $R \geq 2$ and a sequence of non-negative integers $h = (h_{p,q})_{0 \leq p \leq q}$, let $t_0 = R - h_{0,0}$ and

$$t_q := R - h_{q,q} - \sum_{j=1}^{q} \frac{h_{q-j,q}}{\prod_{i=1}^{j} t_{q-i}}$$

for $q \geq 1$.

If $t_q > 0$ for all $q \geq 0$, then every (R, h)-Cantor set is nonempty.

Corollary (Follows from the proposition)

For R sufficiently large

$$t_q \geq (6C)^{-2}R^\alpha > 0 \quad \text{for all } q.$$

Hence $\mathcal{K}_\infty \neq \emptyset$.

Recall: $\mathcal{K}_\infty \subset \varphi^{-1}(\text{Bad}(r)) \cap \text{supp } \mu$. Hence, the corollary completes the proof of the main theorem.
The End